Investigacion-oculto

Investigación

figura-nota-PNASEn la situación actual de cambio climático, la salinidad y la sequía constituyen una amenaza mundial a la productividad de nuestras cosechas. Una parte fundamental de la respuesta de las plantas a las situaciones de estrés ambiental se produce en la membrana celular, dónde se concentra la maquinaria molecular encargada de la turgencia celular y el equilibrio necesario de iones en el interior de la célula. La familia de proteínas CAR (C2-domain ABA-Related) contribuye a estos procesos, facilitando la relocalización de proteínas reguladoras de esta maquinaria molecular, desde el medio intracelular a la membrana plasmática. Nuestro análisis proporciona una explicación de cómo las proteínas CAR alcanzan la membrana y cómo se organizan para disparar los mecanismos de defensa de las plantas frente al estrés.

Maira Diaz, Maria Jose Sanchez-Barrena, Juana Maria Gonzalez-Rubio, Lesia Rodriguez, Daniel Fernandez, Regina Antoni, Cristina Yunta, Borja Belda-Palazon, Miguel Gonzalez-Guzman, Marta Peirats-Llobet, Margarita Menendez, Jasminka Boskovic, Jose A. Marquez, Pedro L. Rodriguez and Armando Albert. "Calcium-dependent oligomerization of CAR proteins at cell membrane modulates ABA signaling", PNAS (2015).
DOI: 10.1073/pnas.1512779113.

 

imagen-lytb

Streptococcus pneumoniae (neumococo), incluido dentro de los denominados supergérmenes, es una causa primordial de la sepsis bacteriana y el agente etiológico más frecuente en neumonía adquirida en la comunidad, así como de la meningitis bacteriana no epidémica. LytB, perteneciente a la familia de proteínas de superficie, portadora de dominios de unión a colina, es responsable de la separación de las células hijas tras la división y participa en la colonización e invasión de la nasofaringe, la formación de biofilms y la evasión de la respuesta inmune del hospedador. Por ello es considerada como una diana para el desarrollo de vacunas y nuevos antimicrobianos. Este trabajo, liderado por investigadores del IQFR y el CIB, en colaboración con científicos de las Universidades de Newcastle (Newcastle upon Tyne, UK) y Notre Dame (Indiana, USA), ha permitido demostrar que LytB es una glucosaminidasa, establecer el origen de su especificidad de sustrato y el posible mecanismo catalítico, proponer un modelo de unión al peptidoglicano de la bacteria y los determinantes de su localización polar en neumococo. Los resultados obtenidos contribuyen a un mejor conocimiento del complejo papel fisiológico que juega LytB en la bacteria y en la interacción con su hospedador. 

Rico-Lastres P, Díez-Martínez R, Iglesias-Bexiga M, Bustamante N, Aldridge C, Hesek D, Lee M, Mobashery S, Gray J, Vollmer W, García P, Menéndez M. 2015. “Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence”. Sci Rep. 5:16198. doi: 10.1038/srep16198.

 

Streptococcus pneumoniae (neumococo), incluido dentro de los denominados supergérmenes, es una causa primordial de la sepsis bacteriana y el agente etiológico más frecuente en neumonía adquirida en la comunidad, así como de la meningitis bacteriana no epidémica. LytB, perteneciente a la familia de proteínas de superficie, portadora de dominios de unión a colina, es responsable de la separación de las células hijas tras la división y participa en la colonización e invasión de la nasofaringe, la formación de biofilms y la evasión de la respuesta inmune del hospedador. Por ello es considerada como una diana para el desarrollo de vacunas y nuevos antimicrobianos. Este trabajo, liderado por investigadores del IQFR y el CIB, en colaboración con científicos de las Universidades de Newcastle (Newcastle upon Tyne, UK) y Notre Dame (Indiana, USA), ha permitido demostrar que LytB es una glucosaminidasa, establecer el origen de su especificidad de sustrato y el posible mecanismo catalítico, proponer un modelo de unión al peptidoglicano de la bacteria y los determinantes de su localización polar en neumococo. Los resultados obtenidos contribuyen a un mejor conocimiento del complejo papel fisiológico que juega LytB en la bacteria y en la interacción con su hospedador.

 

Rico-Lastres P, Díez-Martínez R, Iglesias-Bexiga M, Bustamante N, Aldridge C, Hesek D, Lee M, Mobashery S, Gray J, Vollmer W, García P, Menéndez M. 2015. “Substrate recognition and catalysis by LytB, a pneumococcal peptidoglycan hydrolase involved in virulence”. Sci Rep. 5:16198.

doi: 10.1038/srep16198.

foto-NASAEl bromo es un eficiente catalizador de la destrucción de ozono en la estratosfera, la región de la atmósfera que alberga la capa de ozono. La mayor parte del bromo que llega a la estratosfera procede de emisiones antropogénicas, que se intenta regular a través del Protocolo de Montreal (tratado internacional para la protección de la capa de ozono). Además, una cantidad hasta ahora desconocida de bromo de origen natural puede llegar hasta la estratosfera y, con ello, contribuir a la destrucción de la capa de ozono. Esta fracción, que se emite desde los océanos en forma de compuestos orgánicos conteniendo bromo, resulta de la actividad biológica marina. Un grupo de investigadores, en el que participaba el IQFR, ha medido por primera vez la concentración atmosférica de compuestos de bromo de origen natural, en el Este y Oeste del Océano Pacifico. Las medidas se han realizado en perfiles verticales desde la superficie del océano hasta la entrada a la estratosfera, a unos 18 km, utilizando el avión Global Hawk de NASA y como parte de la misión Airborne Tropical Tropopause Experiment (ATTREX) de NASA. Estos nuevos datos experimentales han permitido cuantificar el impacto del bromo de origen natural sobre la capa de ozono, utilizado un modelo climático detallado.

Maria A. Navarro, Elliot L. Atlas, Alfonso Saiz-Lopez, Xavier Rodriguez-Lloveras, Douglas E. Kinnison, Jean-Francois Lamarque, Simone Tilmes, Michal Filus, Neil R. P. Harris, Elena Meneguz, Matthew J. Ashfold, Alistair J. Manning, Carlos A. Cuevas, Sue M. Schauffler, and Valeria Donets. Airborne measurements of organic bromine compounds in the Pacific tropical tropopause layer. PNAS.
DOI: 10.1073/pnas.1511463112

 

nature-2015-def

 

 

 

 

 

 

 

 

 

 

 

La luz es crucial para muchos procesos biológicos esenciales tales como la fotosíntesis, la visión, los ritmos circadianos, etc., pero también puede causar daño celular fotooxidativo. Para detectar y responder a la luz, los organismos vivos emplean fotorreceptores, que son proteínas asociadas a un cofactor cromóforo sensible a la luz, como el retinal en los fotorreceptores del ojo. En 2011, los equipos del Dr. S. Padmanabhan del grupo de RMN (IQFR) y de la Prof. Montserrat Elías-Arnanz (Universidad de Murcia/Unidad Asociada al IQFR) descubrieron una nueva familia de fotorreceptores que emplean la vitamina B12 como molécula sensible y desvelaron su modo de acción en la regulación génica dependiente de luz. Ahora, estos dos equipos, en colaboración con el de la Prof. Catherine L. Drennan (Massachusetts Institute of Technology, EE.UU.) han descrito las estructuras cristalinas del fotorreceptor dependiente de B12 en sus tres estados relevantes: en la oscuridad (solo y unido al ADN), y tras la exposición a la luz, es decir, tres “instantáneas” de los cambios conformacionales que determinan su modo de acción. Esta investigación ha ampliado el conocimiento sobre el papel biológico asignado a la vitamina B12, y abre un extenso marco para el desarrollo de una nueva clase de herramientas optogenéticas para la expresión de genes controlada por luz.

Marco Jost, Jésus Fernández-Zapata, María Carmen Polanco, Juan Manuel Ortiz-Guerrero, Percival Yang-Ting Chen, Gyunghoon Kang, S. Padmanabhan, Montserrat Elías-Arnanz, and Catherine L. Drennan. “Structural basis for gene regulation by a B12-dependent photoreceptor” Nature 526, 536–541 (22 October 2015) DOI: 10.1038/nature14950 (Published online September 28, 2015).

 

 

cover-art

La falta de vitamina B12, cofactor esencial enzimático en los seres humanos y otros animales, causa anemia perniciosa, disfunción neural y otros trastornos. Años atrás, (PNAS, Vol. 108, p 7565-7570, 2011), gracias a una colaboración entre el Dr. Padmanabhan (del grupo de RMN, IQFR) y la Dra. Elías-Arnanz (Grupo de Genética Molecular, Univ. de Murcia, Unidad Asociada al IQFR), se descubrió una nueva funcionalidad de la vitamina B12. Se comprobó que esta molécula actúa también como sensor de luz y participa mediante esta propiedad en la regulación génica. En esta ocasión, estos mismos investigadores, en colaboración con otros de la Universidad de Manchester (UK) han puesto de manifiesto el intrincado mecanismo fotoquímico responsable de esa nueva función. Este descubrimiento puede ayudar al desarrollo de nuevas herramientas para el control de la expresión génica en células y organismos.

Roger J. Kutta, Roger J. Kutta, Samantha J. O. Hardman, Linus O. Johannissen, Bruno Bellina, Hanan L. Messiha, Juan Manuel Ortiz-Guerrero, Montserrat Elías-Arnanz, S. Padmanabhan, Perdita Barran, Nigel S. Scrutton, Alex R. Jones. The photochemical mechanism of a B12-dependent photoreceptor protein. Nature Communications, 6,
Article number 7907, August 12, 2015. doi: 10.1038/ncomms8907.

 

Proyectos financiados por