Noticias
Vinaora Nivo Slider 3.x

El IQF celebra el Día Internacional de la Mujer con un buen número de talleres y actividades en centros de Educación Primaria, Secundaria y Bachillerato. Además, aprovechamos para recordar el documental que estrenamos en 2024 ¿Puedes darme tres nombres? De esta manera, queremos homenajear a todas las valientes mujeres que desde los años treinta del siglo XX trabajaron en el edificio Rockefeller, desafiando los estereotipos de género de su época e inspirando a las nuevas generaciones de científic@s. La Comisión de Igualdad del IQF tiene el compromiso de trabajar y colaborar con todo el personal del centro para eliminar cualquier forma de discriminación que pueda acaecer en el mismo. En fechas tan señaladas, nos gustaría recordar que la igualdad de género es esencial para el enriquecimiento de los grupos de trabajo, el progreso y el desarrollo, no sólo de la investigación, sino de toda la sociedad en su conjunto.

En sus 90 años de historia, la misión de nuestro instituto ha sido realizar una  investigación de excelencia en fisicoquímica fundamental y aplicada, contribuyendo a la formación de varias generaciones de  científicos del máximo nivel. La visión de nuestro instituto es ser una referencia internacional en investigación multidisciplinar enfocada a resolver los retos actuales de nuestra sociedad en ámbitos de salud, biotecnología, nuevos materiales y medioambiente.

Intranet

Hoy

Sin eventos

Próximos eventos

Sin eventos
Mayo 2025
L M X J V S D
1 2 3 4
5 6 7 8 9 10 11
12 13 14 15 16 17 18
19 20 21 22 23 24 25
26 27 28 29 30 31

Noticias

nature-2015-def

 

 

 

 

 

 

 

 

 

 

 

La luz es crucial para muchos procesos biológicos esenciales tales como la fotosíntesis, la visión, los ritmos circadianos, etc., pero también puede causar daño celular fotooxidativo. Para detectar y responder a la luz, los organismos vivos emplean fotorreceptores, que son proteínas asociadas a un cofactor cromóforo sensible a la luz, como el retinal en los fotorreceptores del ojo. En 2011, los equipos del Dr. S. Padmanabhan del grupo de RMN (IQFR) y de la Prof. Montserrat Elías-Arnanz (Universidad de Murcia/Unidad Asociada al IQFR) descubrieron una nueva familia de fotorreceptores que emplean la vitamina B12 como molécula sensible y desvelaron su modo de acción en la regulación génica dependiente de luz. Ahora, estos dos equipos, en colaboración con el de la Prof. Catherine L. Drennan (Massachusetts Institute of Technology, EE.UU.) han descrito las estructuras cristalinas del fotorreceptor dependiente de B12 en sus tres estados relevantes: en la oscuridad (solo y unido al ADN), y tras la exposición a la luz, es decir, tres “instantáneas” de los cambios conformacionales que determinan su modo de acción. Esta investigación ha ampliado el conocimiento sobre el papel biológico asignado a la vitamina B12, y abre un extenso marco para el desarrollo de una nueva clase de herramientas optogenéticas para la expresión de genes controlada por luz.

Marco Jost, Jésus Fernández-Zapata, María Carmen Polanco, Juan Manuel Ortiz-Guerrero, Percival Yang-Ting Chen, Gyunghoon Kang, S. Padmanabhan, Montserrat Elías-Arnanz, and Catherine L. Drennan. “Structural basis for gene regulation by a B12-dependent photoreceptor” Nature 526, 536–541 (22 October 2015) DOI: 10.1038/nature14950 (Published online September 28, 2015).

 

 

cover-art

La falta de vitamina B12, cofactor esencial enzimático en los seres humanos y otros animales, causa anemia perniciosa, disfunción neural y otros trastornos. Años atrás, (PNAS, Vol. 108, p 7565-7570, 2011), gracias a una colaboración entre el Dr. Padmanabhan (del grupo de RMN, IQFR) y la Dra. Elías-Arnanz (Grupo de Genética Molecular, Univ. de Murcia, Unidad Asociada al IQFR), se descubrió una nueva funcionalidad de la vitamina B12. Se comprobó que esta molécula actúa también como sensor de luz y participa mediante esta propiedad en la regulación génica. En esta ocasión, estos mismos investigadores, en colaboración con otros de la Universidad de Manchester (UK) han puesto de manifiesto el intrincado mecanismo fotoquímico responsable de esa nueva función. Este descubrimiento puede ayudar al desarrollo de nuevas herramientas para el control de la expresión génica en células y organismos.

Roger J. Kutta, Roger J. Kutta, Samantha J. O. Hardman, Linus O. Johannissen, Bruno Bellina, Hanan L. Messiha, Juan Manuel Ortiz-Guerrero, Montserrat Elías-Arnanz, S. Padmanabhan, Perdita Barran, Nigel S. Scrutton, Alex R. Jones. The photochemical mechanism of a B12-dependent photoreceptor protein. Nature Communications, 6,
Article number 7907, August 12, 2015. doi: 10.1038/ncomms8907.

 

RMN-como-herramientaTodos conocemos a alguien que se ha sometido a un examen médico por Resonancia Magnética Nuclear (RMN). Pero lo que sólo muy pocos saben es que la RMN es una potente herramienta para la investigación y determinación de la estructura tridimensional de las moléculas. Esto lo ha explicado la Dra. Marta Bruix, del Grupo de Estructura y Dinámica de Proteínas por RMN, en el programa de RTVE titulado "A hombros de gigantes", el 20/04/2105 (http://bit.ly/1LbRKEk).

 

 

book Boron Fifth Element-def

Como resultado de una colaboración entre el Instituto de Química-Física “Rocasolano” (CSIC) y el Instituto de Ciencia Molecular de la Universidad de Valencia se ha contribuido con un capítulo al libro “Boron: The Fifth Element” (Springer Verlag), dentro de la serie “Challenges and Advances in Computational Chemistry and Physics”. A partir del levantamiento del secreto sobre la utilización de los boranos - estructuras poliédricas BxHy - como combustible para cohetes en la década de 1950 se ha desarrollado una intensa investigación sobre la síntesis de estos compuestos y sus derivados. En este libro se revisan los avances más recientes en la química del boro, con particular énfasis en la contribución de la química computacional.
Josep M. Oliva, Antonio Francés-Monerris, and Daniel Roca-Sanjuán, “Quantum Chemistry of Excited States in Polyhedral Boranes”. Capítulo 4 en “Boron: The Fifth Element”, volumen 20 de la serie “Challenges and Advances in Computational Chemistry and Physics”, Editorial Springer (2016) ISBN 978-3-319-22282-0.

ParaBioF-small

Sólo un 2% del genoma codifica proteínas. ¿Qué hace el resto? ¿Cómo es su estructura?. Una de la regiones más interesantes y desconocidas en el genoma de la célula eucariota es el centrómero. En dos trabajos recientes, investigadores del IQFR y del CBMSO, en colaboración con otros grupos internacionales, han demostrado que secuencias centroméricas de organismos tan distantes evolutivamente como la mosca del vinagre y el ser humano son capaces de plegarse in vitro formando estructuras secundarias del mismo tipo, denominadas “i-motif”. La prevalencia de estas estructuras en secuencias centroméricas de organismos tan dispares sugiere que este motivo podría estar involucrado en la organización estructural del centrómero. Si así fuese, el ADN centromérico podría haberse seleccionado durante la evolución, no por su secuencia primaria, sino por su capacidad para formar este tipo de estructura no canónica. 
 
Estos dos trabajos son resultado de una colaboración con nuestro colega y amigo, Alfredo Villasante, a cuya memoria están dedicados.
 
M. Garavís, N. Escaja, V. Gabelica,  A. Villasante and C. González. Centromeric alpha-satellite DNA adopts dimeric i-motif structures capped by AT Hoogsteen base pairs. Chemistry-A Eur. J., 21, 9816-9824, 2015. doi: 10.1002/chem.201500448 (artículo del mes SBE, junio 2015)
 
M. Garavís, M. Méndez-Lago, V. Gabelica, S. L. Whitehead  G. González, and A. Villasante. The structure of an endogenous Drosophila centromere reveals the prevalence of tandemly repeated sequences able to form i-motifs. Sci. Rep., 5, 13307, 2015. doi: 10.1038/srep13307
 
 

nanoestructuras-ferrita

Las nuevas técnicas desarrolladas en este trabajo permiten crecer islas ultrafinas de ferrita de cobalto de hasta 100 μm2, con una superficie atómicamente plana y libres de fronteras de antifase. La concentración extremadamente baja de defectos en dichas construcciones da lugar a un orden magnético robusto con dominios magnéticos excepcionalmente grandes, incluso para espesores inferiores a 1 nm. Estas propiedades excepcionales hacen posible la evaluación de la influencia de efectos extrínsecos en el anclado de paredes de dominio. El trabajo ha sido realizado por investigadores del Instituto de Química-Física "Rocasolano" y otros institutos del CSIC (ICV, ICMM) en colaboración con investigadores asociados al sincrotrón Alba.

 

L. Martín-García, A. Quesada, C. Munuera, J.F. Fernández, M. García-Hernández, M. Foerster, L. Aballe, J. de la Figuera. Atomically flat ultrathin cobalt ferrite islands.Advanced Materials. DOI: 10.1002/adma.201502799

 

 

GPDH

La enzima galactitol-1-fosfato 5-deshidrogenasa (GPDH) pertenece a la superfamilia de las deshidrogenasas/reductasas de cadena media (MDR), un grupo de enzimas cuyo miembro más conocido, la alcohol deshidrogenasa de hígado de caballo, se lleva estudiando desde hace más de cuarenta años. GPDH cataliza la oxidación de L-galactitol-1-fosfato, originando D-tagatosa-6-fosfato para lo cual requiere zinc y NAD+. José M. Mancheño (Dept. de Cristalografía), en colaboración con los investigadores Gert W. Kohring, Federico Gago y Rosario Muñoz, ha determinado la estructura de GPDH de Escherichia coli, tanto en ausencia como en presencia de análogos de sustrato (glicerol y Tris) y siempre con zinc en el centro catalítico. Sorprendentemente, en la región de contacto entre las subunidades de GPDH (la enzima es dimérica) se observa una cavidad interna muy grande, que probablemente facilita los cambios conformacionales que se producen en la enzima asociados a la catálisis y que no ha sido observada en ningún otro miembro de las MDR. El modo de unión del glicerol revela por primera vez en esta superfamilia un átomo de zinc penta-coordinado con un análogo de sustrato, así como una interacción entre un grupo hidroxilo primario y un residuo ácido del centro catalítico (Glu144). Esta última interacción fue propuesta hace más de treinta años aunque nunca demostrada experimentalmente. La información estructural obtenida, junto con análisis de modelado molecular de los complejos con D- y L-galactitol-1-fosfato, han revelado las bases estructurales de la enantioselectividad de GPDH.


Rocío Benavente, María Esteban-Torres, Gert-Wieland Kohring, Álvaro Cortés-Cabrera, Pedro A. Sánchez-Murcia, Federico Gago, Iván Acebrón, Blanca De Las Rivas, Rosario Muñoz, José M. Mancheño. “Enantioselective oxidation of galactitol-1-phosphate by galactitol-1-phosphate 5-dehydrogenase from Escherichia coli”. Acta Crystallographica (2015) D71, 1540-1554.
(doi: 10.1107/S1399004715009281)

 

web page figure

La esclerosis lateral amiotrófica (ELA) es una enfermedad neuromuscular mortal que afecta a 2.800 personas en España, con dos nuevos casos diagnosticados cada día. Se han encontrado agregados anormales de la proteína "TDP-43" (proteína de respuesta transactiva de unión a ADN, de 43 kDa) en más del 95% de las neuronas motoras dañadas de estos enfermos. Dicha proteína está también relacionada con otras enfermedades neurodegenerativas, incluyendo el Alzheimer y la degeneración lobular frontotemporal. La agregación de TDP-43 se atribuye a una pequeña región de la proteína rica en los aminoácidos asparragina y glutamina que se extiende desde los residuos 341 a 357. Sin embargo, se desconocía la conformación de este segmento y el mecanismo de formación de los agregados patológicos. Sobre la base de múltiples ensayos bioquímicos y biofísicos, investigadores del IQFR, en colaboración con científicos de la Universidad de Columbia (Nueva York), el Instituto Cajal (CSIC), IMDEA Nanociencia (CAM) y el Centro Internacional de Ingeniería Genética y Biotecnología (Trieste, IT) han revelado que los motivos de horquilla beta de este segmento se ensamblan en una estructura de tipo amiloide con una morfología atípica de fibrillas. Asimismo, a partir de métodos computacionales, se propone un modelo estructural para el agregado cuasi-amiloide en el cual las horquillas beta de TDP-43 (341-357) se asocian con una novedosa topología paralela. Es probable que este modelo estructural avance nuestra comprensión del papel de la TDP-43 en las enfermedades neurodegenerativas y quizá ayude en la búsqueda de tratamientos.

M. Mompeán, R. Hervás, Y. Xu, T.H. Tran, C. Guarnaccia, E. Buratti, F. Baralle, L. Tong, M. Carrión-Vázquez, A.E. McDermott, D.V. Laurents
J. Phys. Chem. Letters, June 2015, doi: 10.1021/acs.jpclett.5b00918

 

Proyectos financiados por